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Abstract

In developing suitable numerical techniques for computational aero-acoustics, the dispersion-relation-preserving

(DRP) scheme by Tam and co-workers and the optimized prefactored compact (OPC) scheme by Ashcroft and Zhang

have shown desirable properties of reducing both dissipative and dispersive errors. These schemes, originally based on

the finite difference, attempt to optimize the coefficients for better resolution of short waves with respect to the compu-

tational grid while maintaining pre-determined formal orders of accuracy. In the present study, finite volume formula-

tions of both schemes are presented to better handle the nonlinearity and complex geometry encountered in many

engineering applications. Linear and nonlinear wave equations, with and without viscous dissipation, have been

adopted as the test problems. Highlighting the principal characteristics of the schemes and utilizing linear and nonlinear

wave equations with different wavelengths as the test cases, the performance of these approaches is documented. For the

linear wave equation, there is no major difference between the DRP and OPC schemes. For the nonlinear wave equa-

tions, the finite volume version of both DRP and OPC schemes offers substantially better solutions in regions of high

gradient or discontinuity.

� 2005 Elsevier Inc. All rights reserved.
1. Introduction

In computational aero-acoustics (CAA) accurate prediction of the generation of sound is demanding due
the requirement of preserving the shape and frequency of wave propagation and generation. Furthermore,

the numerical schemes need to handle multiple scales, including long and short waves, and nonlinear
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Nomenclature

c sound speed
CFL Courant–Friedrichs–Lewy number ¼ cDtDx
Di derivative in point i (Eq. (35))

DF
i ; DB

i forward and backward derivative operators in the point i (Eqs. (24)–(26), (33), (34))

E error (Eqs. (4), (27), (78)–(80))

fd finite difference

fv finite volume

K(i) function computed in the stage i, in the Runge–Kutta time integration (Eqs. (46), (47))

Pe Peclet number ¼ UDx
l

si, eN� i coefficients used to compute the derivative operator on the boundary, for OPC scheme (Eq.

(33), (34), (37), (38))

t time

uBei , uFei forward and backward operators computed on east face in the cell i (Eqs. (29)–(32), (57)–(60),

(66)–(69))

uBwi ,uFwi forward and backward operators computed on west face in the cell i (Eqs. (29)–(32), (57)–

(60), (66)–(69))

uei the value of parameter u on face e, in cell i (Eqs. (35), (36), (55), (56), (89), (91))
uwi the value of parameter u on face w, in cell i (Eqs. (35), (36), (55), (56), (89), (91))

u(m) the value of function u in the stage m in the Runge–Kutta time integration (Eqs. (46), (47))

un the value of function u in the n iteration, it is related to time integration (Eqs. (41), (42), (46),

(47))

x, y coordinate in space

Dx, Dy, Dt length of grid in space, in x and y directions, respectively, time step size
�a, wavenumber of a space marching scheme (Eqs. (3), (4), (27))

a wavenumber (Eqs. (3), (70))
l viscosity (Eqs. (92)–(96))

x* angular frequency (Eqs. (42), (43), (72), (73))

( )F, ( )B parameter designed for forward, respectively, backward operator (Eqs. (25), (26), (37), (38))
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governing laws arising from sources such as turbulence, shocks, interaction between fluid flows and elastic

structures, and complex geometries. It is well recognized [1–3] that in order to conduct satisfactory CAA,

numerical schemes should induce minimal dispersion and dissipation errors. In general, higher-order

schemes would be more suitable for CAA than the lower-order schemes since, overall, the former are less

dissipative. That is why higher-order spatial discretization schemes have gained considerable interest in

computational acoustics [4–6]. Table 1 summarizes several approaches proposed in the literature.

For longer wavelengths, the formal order of accuracy is sufficient to indicate the performance of a

scheme. However, for shorter waves relative to the grid size, it is known that the leading truncation error
terms are not good indicators [7,8]. To handle broad band waves, the idea of optimizing the scheme coef-

ficients via minimizing the truncation error associated with a particular range of wave numbers has been

used over the years by many researchers, e.g. [9–16]. A successful approach is the dispersion-relation-

preserving (DRP) finite difference scheme proposed by Tam and co-workers [2,3]. The basic idea in the

DRP scheme is to optimize coefficients to satisfactorily resolve short waves with respect to the computa-

tional grid, namely, waves with wavelengths of 6–8Dx (defined as 6–8 points per wave or PPW) or shorter.

It maximizes the accuracy by matching the wave number and frequency characteristics between the



Table 1

The computational cost for DRP and OPC schemes

Scheme The philosophy of the scheme Applications

DRP [2,3] In this scheme a central difference is employed to

approximate first derivative. The coefficients are optimized

to minimize a particular type of error

Wave propagation

LDDRK [9,10] Traditionally, the coefficients of the Runge–Kutta scheme

are optimized to minimize the dissipation and propagation

waves. The optimization does not compromise the stability

consideration

Wave propagation problem

LDFV [11,12] Scheme minimizes the numerical dispersion errors that

arise in modeling convection phenomena, while keeping

dissipation errors small. This is accomplished by special

high-order polynomials that interpolate the properties at

the cell centers to the left and right sides of cell faces. A

low pass filter has been implemented to remove high

frequency oscillation near shock waves

Shock noise prediction

GODPR [13] It is derived, based on optimization that gives finite

difference equations locally the same dispersion relation as

the original partial differential equations on the grid points

in the nonuniform Cartesian or curvilinear mesh

Used for geometry, that rectangular grid is

not appropriate:
� Acoustic radiation from an oscillating circular

cylinder in a wall

� Scattering of acoustic pulse from a cylinder

� Acoustic wave propagation

OWENO [14] The idea is to optimize WENO in wave number schemes,

following the practice of DRP scheme to achieve high

resolution for short wave. But in the same time it retains

the advantage of WENO scheme in that discontinuity are

captured without extra numerical damping.

Simulation of the shock/broadband acoustic wave

CE/SE [26,27] The method is developed by imposing that: (i) space and

time to be unified and treated as a single entity; (ii) both

local and global flux conservation in space and time to be

enforced; (iii) multidimensional scheme to be constructed

without using the dimensional-splitting approach

Flow involving shock; acoustic wave

FDo, RKo [38] Optimized schemes are obtained by similar approach as

DRP (space discretization), respectively LDDRK (time

discretization). The difference consists that: (i) error is

minimized taking into account logarithm of the

wavenumber; (ii) the error is minimized on an interval that

starts from ln(p/16). The stability and accuracy increase

for these schemes

(a) convective wave equation

(b) subsonic flows past rectangular open cavities;

(c) circular jet
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analytical and the numerical operators in the range of resolvable scales. Recently, Ashcroft and Zhang [15]

have reported a strategy for developing optimized prefactored compact (OPC) schemes, requiring smaller

stencil support than DRP. The prefactorization strategy splits the central implicit schemes into forward and

backward biased operators. Using Fourier analysis, they have shown that it is possible to select the coef-
ficients of the biased operators such that their dispersion characteristics match those of the original central

compact scheme. Hixon and Turkel [17] proved that the ‘‘prefactored scheme is equivalent to the initial

compact scheme if: (i) the real components of forward and backward operators are equal to those at the

corresponding wavenumber of the original compact scheme; (ii) the imaginary components of the forward

and backward operators are equal in magnitude and opposite in sign.

Both DRP and OPC schemes are originally designed based on the finite difference approach. In order to

satisfy the governing laws of the fluid physics, it can be advantageous to adopt the finite volume approach

[18–20], which ensures that fluxes estimated from different sides of the same surface are identical, i.e., no
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spurious source/sink is generated due to numerical treatment. Such a requirement is particularly important

when nonlinearity is involved, as is typically the case in shock and turbulence aspects of the aero-acoustic

computations. Furthermore, a finite volume formulation can offer an easier framework to handle the irreg-

ular geometry and moving boundaries. In this work, we extend the concept embodied in the original, finite

difference-based DRP scheme (which we call DRP-fd) to a finite volume formulation (which we call DRP-
fv). Similarly, for the OPC-scheme, we extend the basic concepts of the original, finite difference-based OPC

(OPC-fd) scheme, to a finite volume formulation, called OPC-fv. Our overall goal is to develop the finite

volume version of DRP and OPC schemes utilizing a cut-cell type of Cartesian-grid techniques and numer-

ical treatments suitable for aero-acoustic problems. Papers relevant to these aspects can be found in Refs.

[19–34].

In this paper, we present the finite volume formulation of both DRP and OPC schemes, and assess both

fd and fv versions of the DRP and OPC schemes, using well defined test problems to facilitate systematic

evaluations. Both linear and nonlinear wave equations with different wavelengths and viscous effects are
utilized for direct comparisons. In the following, we first summarize the essence of the individual schemes,

including derivations, then present assessment of the test cases.
2. Numerical schemes

In the following we use the following one-dimensional wave equation to facilitate the development and

presentation of the concept and numerical procedures:
ou
ot

þ c
ou
ox

¼ 0. ð1Þ
The equation contains time and space derivative. In our work the space derivative term is treated with

either DRP or OPC scheme, and the time derivative by a low-dissipation and low-dispersion Runge–Kutta
(LDDRK) scheme [9], to be discussed later.

In Section 2.1, we first summarize the original finite difference procedure of DRP. In Section 2.2, we

present the finite volume version of DRP. The boundary treatment of the DRP schemes is presented in Sec-

tion 2.3.

The OPC scheme is the second method considered for the space derivative. The finite difference proce-

dure of the OPC scheme is offered in Section 2.4. The extension of this approach to a finite volume frame-

work is presented in 2.5. The specific boundary treatment of OPC schemes is given in 2.6.

In Section 2.7, the LDDRK scheme [9] is presented. As mentioned earlier, this scheme is used to approx-
imate time derivative in all treatment trough.

2.1. Discretization in space – The finite difference-based DRP scheme (DRP-fd)

Consider the simple one-dimensional wave equation. In [2,3], the discretization in space is given by:
ou
ox

ðxÞ ffi 1

Dx

XN
j¼�N

ajuðxþ jDxÞ; ð2Þ
where Dx is the space grid, and coefficients aj are constant. This approach is based on two goals: (i) the

behavior of the numerical solution in the resolvable wavenumber range closely matches that of the exact

solution, and (ii) the formal order of accuracy of scheme spanning 2N + 1 nodes is 2(N � 1).

To obtain the value of the wave number of the scheme the author used the Fourier transform and shift

theorems
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�a ¼ ��i

Dx

XN
j¼�N

ajeijaDx. ð3Þ
The goal is to ensure that �a (wavenumber of the scheme) is as close to a as possible. To accomplish this goal
the error is minimized over a certain wavenumber range, aDx 2 [�g;g] – the numerical dispersion is reduced

by specifying the range of optimization [2,3]
E ¼
Z g

�g
jaDx� �aDxj2 dðaDxÞ. ð4Þ
It is noted that �a is real, and hence the coefficients aj must be anti-symmetric, i.e.,
a0 ¼ 0 and a�j ¼ �aj. ð5Þ

On substituting Eq. (3) into Eq. (4), and taking Eq. (5) into account, E can be written as,
E ¼
Z g

�g
k� 2

XN
j¼1

aj sinðk � jÞ
" #2

dk; ð6Þ
where k = aDx.
The coefficients are determined by imposing a certain order of accuracy to the scheme, and minimizing

the error E.

2.2. The finite volume-based DRP scheme (DRP-fv)

To incorporate the DRP-fd concept into a finite volume framework, let us consider a one-dimensional

linear wave equation:
o/
ot

þ c
o/
ox

¼ 0. ð7Þ
To derive the discretized equation, we employ the grid point cluster shown in Fig. 1. We focus on the

grid point i, which has the grid points i � 1, and i + 1 as its neighbors. The dashed lines define the

control volume and letters e and w denote east and west faces, respectively, of the control volume.

For the one-dimensional problem under consideration, we assume a unit thickness in the y and z direc-

tions; thus, we obtain
Z w

e

o/
ot

dxþ cððA/Þe � ðA/ÞwÞ ¼ 0; ð8Þ
where (A/)e and (A/)w are the flux across the east and west faces, respectively.

Hence, the discretized wave equation (7) can be written as
o�/
ot

Dxþ cððA/Þe � ðA/ÞwÞ ¼ 0; ð9Þ
where �/ is the averaged value of / over a control volume.
( x)e( xδ δ)w

i-2 i-1(E) w i+3i+2i+1(W)ei

x

Fig. 1. Grid points cluster for one-dimensional problem.
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Taking into account Eq. (9), we describe the general form of the approximation of o/
ox in 1D using the

control volume concept:
Fig. 2.

nodes

north
o/
ox

! 1

Dx
ðð/AÞe � ð/AÞwÞ. ð10Þ
The general form of the DRP scheme is:
o/
ox

� �
l

ffi 1

Dx

Xk¼3

k¼�3

ak/lþk; ð11Þ
where Dx is the space grid, and coefficients aj are constant.

The DRP scheme has a general form similar to the central difference approximation. Hence, one can

adopt a central difference scheme to express /e in the neighborhood:
ð/Þe ¼ b1/i�2 þ b2/i�1 þ b3/i þ b4/iþ1 þ b5/iþ2 þ b6/iþ3; ð12Þ
ð/Þw ¼ b1/i�3 þ b2/i�2 þ b3/i�1 þ b4/i þ b5/iþ1 þ b6/iþ2. ð13Þ
Taking into consideration Eqs. (10)–(13) we obtain the values of the bi, i = 1, . . ., 6 by imposing that the

value of / at the same locations has the same values as that of the DRP-fd.
Xk¼3

k¼�3

ak/lþk ¼ /e � /w. ð14Þ
Hence, the values of coefficients b�s are
b1 ¼ b6 ¼ a3;

b2 ¼ b5 ¼ a2 þ a3;

b3 ¼ b4 ¼ a1 þ a2 þ a3.

8><
>: ð15Þ
To illustrate the above-described concept, we consider the following equation:
ou
ot

þ c1
ou
ox

þ c2
ou
oy

¼ 0. ð16Þ
If we integrate Eq. (16) on the surface we have (see Fig. 2):
d c

e

s

w

n

P

ba S

W E

N

Grid notation for two-dimensional problem, where (i) P denotes the center of a cell, (ii) E, W, N, and S denote, respectively, the

corresponding to the east, west, north and south neighbors, (iii) e, w, n and s denote, respectively, the center of the east, west,

and south faces of the cell, and (iv) a, b, c, and d denote, respectively, the corners of the cell.
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Z
V

ou
ot

dvþ
I

c1u dy � c2u dx ¼ ou
ot

sabcd þ c1ðusDys þ ueDye þ unDyn þ uwDywÞ

þ c2ð�usDxs � ueDxe � unDxn � uwDxwÞ. ð17Þ
The resulting DRP-fv scheme is:
o�u
ot

¼ 1

Sabcd
F i;j; ð18Þ
where
F i;j ¼ �½c1ðusi;jDys þ uei;jDye þ uni;jDyn þ uwi;jDywÞ þ c2ðusi;jDxs þ uei;jDxe þ uni;jDxn þ uwi;jDxwÞ�; ð19Þ
uei;j ¼ b1ui�2;j þ b2ui�1;j þ b3ui;j þ b4uiþ1;j þ b5uiþ2;j þ b6uiþ3;j; ð20Þ
uwi;j ¼ b1ui�3 þ b2ui�2;j þ b3ui�1;j þ b4ui;j þ b5uiþ1;j þ b6uiþ2;j; ð21Þ
uni;j ¼ b1ui;j�2 þ b2ui;j�1 þ b3ui;j þ b4ui;jþ1 þ b5ui;jþ2 þ b6ui;jþ3; ð22Þ
usi;j ¼ b1ui;j�3 þ b2ui;j�2 þ b3ui;j�1 þ b4ui;j þ b5ui;jþ1 þ b6ui;jþ2. ð23Þ
2.3. The boundary treatment of the DRP scheme

The current version of the DRP scheme requires seven grid points in space. Consequently, it is necessary

to impose some supplementary condition for boundary treatments. In this regard, Tam et al. [2] devise

ghost points. The minimum number of ghost points is equal to the number of boundary conditions. For

example, for an inviscid flow the condition of no flux through the wall requires a minimum of one ghost

value per boundary point on the wall. It is desirable to use a minimum number of ghost points to maintain

simplicity in coding and structuring data.
In this paper, we use only backward difference for grid points near the computational boundary and a

ghost point is used only for wall boundary condition.
2.4. The finite difference-based optimized prefactored compact (OPC-fd) scheme

To derive the factorized compact scheme, Ashcroft and Zhang [15] define forward and backward oper-

ators DF
i and DB

i , such that
ou
ox

� �
i

¼ 1

2
ðDB

i þ DF
i Þ. ð24Þ
The generic stencil for the forward and backward derivative operators is then defined as:
gF � DF
iþ1 þ bF � DF

i ¼ 1

Dx
½aF � uiþ2 þ bFuiþ1 þ cF � ui þ dF � ui�1 þ eFui�2�; ð25Þ

bB � DB
i þ cB � DB

i�1 ¼
1

Dx
½aB � uiþ2 þ bBuiþ1 þ cB � ui þ dB � ui�1 þ eBui�2�. ð26Þ
The coefficients of the scheme are chosen such that: (i) the wavenumber of the scheme is close to the impor-

tant wavenumber of the exact solution; (ii) the imaginary components of the forward and backward stencils

are equal in magnitude and opposite in sign, and the real components are equal and identical to original

compact scheme; (iii) the scheme preserves a certain order of accuracy. The authors [15] define the inte-

grated error (weighted deviation) as:
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E ¼
Z rp

0

ðaDx� �aDxÞW ðaDxÞ daDx; ð27Þ
where W(aDx) is a weighting function, and r is a factor to determine the optimization range (0 < r < 1). The

integrated error, defined in Eq. (27), is different from the one of Tam and Web [2] in that it contains the

weighting function. The coefficients are obtained by imposing that, within a given asymptotic order, the
error is minimal. In space discretization, one sacrifices formal order of accuracy in favor of wide-band per-

formance, especially for the short wave components.
2.5. The finite volume-based OPC scheme (OPC-fv)

Taking into account Eq. (8) that describes the approximation of the first derivative in the finite volume

formulation, equations that describe the OPC scheme, Eqs. (25 and 26), and the idea that the general form

of approximation of the function for points at the center of the cell face, namely, e and w assumes similar
forms:
ue ¼ 0.5ðuFe þ uBeÞ;
uw ¼ 0.5ðuFw þ uBwÞ;

�
ð28Þ
where uFe, uBe, uFw and uBw are determined from:
guFeiþ1 þ buFei ¼ buiþ1 � dui; ð29Þ
guFwiþ1 þ buFwi ¼ bui � dui�1; ð30Þ
buBei þ guBei�1 ¼ bui � duiþ1; ð31Þ
buBwi þ guBwi�1 ¼ bui�1 � dui; ð32Þ
where the coefficients are the same as those in the OPC-fd scheme: g = gF = cB, b = bF = bB, b = b F = �dB,

d = = dF = �bB. These relationships among forward and backward operators are obtained by Ashcroft and

Zhang [15].
2.6. The boundary treatment of the OPC scheme

Boundary formulation of the OPC scheme employs a biased explicit stencil. Ashcroft and Zhang [15]

design OPC-fd scheme with the following boundary stencil:
DB
1 ¼ 1

Dx

X4
j¼1

sjuj; DB
N ¼ 1

Dx

XN
j¼N�3

ejuj ð33Þ
and
DF
1 ¼ 1

Dx

X4
j¼1

�eNþ1�juj; DF
N ¼ 1

Dx

XN
j¼N�3

�sNþ1�juj; ð34Þ
where the coefficients sj and ej are determined by matching the Taylor series of the forward and backward

compact interior stencils to third-order accuracy.
The boundary treatment in case of OPC-fv approach is similar to that of OPC-fd, but the boundary sten-

cil is computed on the face:



M. Popescu et al. / Journal of Computational Physics 210 (2005) 705–729 713
Di ¼ ðuAÞei � ðuAÞwi ; ð35Þ

uw1 ¼
P3
i¼1

aiui;

ue1 ¼
P3
i¼1

aiuiþ1;

8>>><
>>>:

uwN ¼
P3
i¼1

riuN�i;

ueN ¼
P3
i¼1

riuN�iþ1;

8>>><
>>>: ð36Þ
where the values of the coefficients are:
aB1 ¼ �s1;
aB2 ¼ �s1 � s2;
aB3 ¼ �s1 � s2 � s3;

8<
:

aF1 ¼ eN ;
aF2 ¼ eN þ eN�1;

aF3 ¼ eN þ eN�1 � eN�2;

8<
: ð37Þ

rB1 ¼ eN ;
rB2 ¼ eN þ eN�1;

rB3 ¼ eN þ eN�1 � eN�2;

8<
:

rF1 ¼ �s1;
rF2 ¼ �s1 � s2;
rF3 ¼ �s1 � s2 � s3.

8<
: ð38Þ
2.7. Time discretization – The LDDRK method

Hu et al. [9] consider time integration using the Runge–Kutta algorithm of the differential equation
ou
ot

¼ F ðuÞ; ð39Þ
where the operator F is a function of u. An explicit p-stage algorithm advances the solution of Eq. (39) from

the nth to the (n + 1)th iteration as
uð0Þ ¼ un;

Kð1Þ ¼ DtF ðuð0ÞÞ;
. . .

KðiÞ ¼ DtF ðuði�1ÞÞ;
uðiÞ ¼ un þ biKðiÞ; i ¼ 1; . . . ; p;
. . .

unþ1 ¼ uðpÞ;

ð40Þ
where bp = 1, u(p), where p indicates the stage in algorithm advances, and un + 1, where n indicates the num-

ber of iterations for time dependent computation.

The value of the un + 1 can be written on short like
unþ1 ¼ un þ
Xp
j¼1

Yp

l¼p�jþ1
bl|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

¼cj

Dtj
ojun

otj
. ð41Þ
The resulting algorithm is obtained by optimizing the dispersion and dissipation properties. Assuming F(u)

is linear and applying temporal Fourier transform to (41), the amplification factor is given by
r ¼ ~unþ1

~un
¼ 1þ

Xp
j¼1

cjð�ix�DtÞj
 !

. ð42Þ
The exact amplification factor is
re ¼ e�ix�Dt ¼ e�ir. ð43Þ
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The numerical amplification factor r in (42) is viewed as an approximation of the exact factor. The order of

the optimized Runge–Kutta scheme is indicated by the leading coefficient in (42) that matches the Taylor

series expansion of e�ir. For instance, the third-order algorithm is obtained by setting cj = 1/j! for j = 1, 2

and 3.

To compare the numerical and exact solutions we take into consideration the ratio:
r
re

¼ jrje�id; ð44Þ
where |r| represents the dissipation rate (obviously, the correct value should be 1), and d represents the

phase error (or dispersive error) where the correct value should be 0.

Hu et al. [9] obtained coefficients of the LDDRK scheme by imposing that: (i) the scheme has certain
order of accuracy, (ii) the error of the amplification factor of the scheme is minimized, which means that

both dispersion and dissipation errors are minimized. In other words the following integral is minimized:
Z C

0

1þ
Xp
j¼1

cjð�irÞj � e�ir

�����
�����
2

dr ¼ min ð45Þ
and (iii) the amplification factor of the scheme is less than one within the given stability limit.

In this work we use a two-step alternating scheme: in odd steps we use four stages and in the even steps

we use six stages. The scheme is a fourth-order accurate scheme in time for a linear problem and second-

order accurate for a nonlinear problem. The advantage of the alternating schemes is that, when two steps

are combined, the dispersion and the dissipation errors can be reduced and higher-order of accuracy can be

maintained. The specific procedure is given below.

1. Four-stage
Kð1Þ ¼ DtF ðunÞ;

Kð2Þ ¼ DtF un þ 1

4
Kð1Þ

� �
;

Kð3Þ ¼ DtF un þ 1

3
Kð2Þ

� �
;

Kð4Þ ¼ DtF un þ 1

2
Kð3Þ

� �
;

unþ1 ¼ un þ Kð4Þ.

ð46Þ
2. Six-stage
Kð1Þ ¼ DtF ðunÞ;
Kð2Þ ¼ DtF ðun þ 0.17667Kð1ÞÞ;
Kð3Þ ¼ DtF ðun þ 0.38904Kð2ÞÞ;

Kð4Þ ¼ DtF un þ 1

4
Kð3Þ

� �
;

Kð5Þ ¼ DtF un þ 1

3
Kð4Þ

� �
;

Kð6Þ ¼ DtF un þ 1

2
Kð5Þ

� �
;

unþ1 ¼ un þ Kð6Þ.

ð47Þ
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In the following we will give an implementation example of LDDRK scheme when we use OPC and

DRP schemes for space discretization. Based on Eq. (1), the value of F in point l is defined as follows:

� DRP-fd:
F l ¼ � c
Dx

X3
i¼�3

aiulþi. ð48Þ
� DRP-fv:
F l ¼ �cðuel � uwl Þ=Dx; ð49Þ

where
uel ¼ b1ul�2 þ b2ul�1 þ b3ul þ b4ulþ1 þ b5ulþ2 þ b6ulþ3; ð50Þ
uwl ¼ b1ul�3 þ b2ul�2 þ b3ul�1 þ b4ul þ b5ulþ1 þ b6ulþ2. ð51Þ
In the linear case, the fv and fd schemes are equivalent.

� OPC-fd:
F l ¼ � c
2
ðDB

l þ DF
l Þ; ð52Þ
where DB
l and DF

l are obtained from the following system of equations:
gDF
iþ1 þ bDF

i ¼ 1

Dx
½bðuiþ1 � uiÞ þ dðui�1 � uiÞ�; i ¼ 1; . . . ;N ; ð53Þ

bDB
i þ gDB

i�1 ¼
1

Dx
½dðui � uiþ1Þ þ bðui � ui�1Þ�; i ¼ 1; . . . ;N ; ð54Þ
where N represent the number of grid points in space.

� OPC-fv:
F l ¼ �cðuel � uwl Þ=Dx; ð55Þ

where
uel ¼ 0.5ðuBel þ uFel Þ; and uwl ¼ 0.5ðuBwl þ uFwl Þ. ð56Þ
The value of uBel , uFel , uBwl , uFwl are obtained by solving the following system of equations:
guFeiþ1 þ buFei ¼ buiþ1 � dui; i ¼ 1; . . . ;N ; ð57Þ
guFwiþ1 þ buFwi ¼ bui � dui�1; i ¼ 1; . . . ;N ; ð58Þ
buBei þ guBei�1 ¼ bui � duiþ1; i ¼ 1; . . . ;N ; ð59Þ
buBwi þ guBwi�1 ¼ bui�1 � dui; i ¼ 1; . . . ;N . ð60Þ
3. Analytical assessment of DRP and OPC schemes

3.1. Operation counts

We will compare the cost between the alternative approaches only for the approximation of the first

derivative, because we employ the same time stepping scheme for both scheme.
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The efficient form of general formula for the discretization in space of the DRP-fd scheme is:
Table

The co

Schem

DRP-f

DRP-f

OPC-f

OPC-f
F i ¼
1

Dx
½a3ðxiþ3 � xi�3Þ þ a2ðxiþ2 � xi�2Þ þ a1ðxiþ1 � xi�1Þ�. ð61Þ
This scheme requires a total of three multiplications and five additions to evaluate the first derivatives in a

certain point. In case of DRP-fv the most efficient form of the computations scheme is:
ue ¼
1

Dx
½b1ðuiþ3 þ ui�2Þ þ b2ðuiþ2 þ ui�1Þ þ b3ðui þ uiþ1Þ�; ð62Þ

uw ¼ 1

Dx
½b1ðui�3 þ uiþ2Þ þ b2ðui�2 þ uiþ1Þ þ b3ðui þ ui�1Þ�. ð63Þ
DRP-fv requires a greater number of operations than DRP-fd: 6 multiplications and 11 additions to com-

pute the first derivatives at a given point.

To see the computational cost of the OPC-fd scheme we adopt the most efficient form that is:
1

2
DF

i ¼ 1

2bDx
½bðuiþ1 � uiÞ þ dðui�1 � uiÞ� �

g
2b

DF
iþ1; ð64Þ

1

2
DB

i ¼ 1

2bDx
½bðui � ui�1Þ þ dðui � uiþ1Þ� �

g
2b

DB
i�1; ð65Þ
where the relation between the coefficients of the forward and backward stencils has been substituted to

highlight the equivalent terms in the two stencils. The operation count is then four multiplications and five

additions per point [15].

OPC-fv can be written in the form:
1

2
DF

i ¼ 1

2Dx
ðuFei � uFwi Þ; ð66Þ

1

2
DB

i ¼ 1

2Dx
ðuBei � uBwi Þ; ð67Þ
where
uFei ¼ 1
bF
½buiþ1 � dui � guFeiþ1�;

uFwi ¼ 1
b ½bui � dui�1 � guFwiþ1�;

(
ð68Þ

uBei ¼ 1
b ½bui � duiþ1 � guBei�1�;

uBwi ¼ 1
b ½bui�1 � dui � guBei�1�.

(
ð69Þ
In this case the operation count is 11 additions and 6 multiplications per point.

So we can see also in Table 2 the finite volume approach is computationally more expensive.
2

mputational cost for DRP and OPC schemes

e Number of operation

d 8

v 17

d 9

v 17
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3.2. Dispersive characteristics

The characteristics of the OPC and DRP schemes, in the finite difference form over the interval 0 to p,
are shown in Fig. 3. One can see that the difference between the effective wave number of the scheme and

the real wave is maintained to be within 2% if aDx < 1.30 for the DRP scheme, and aDx < 1.84 for the OPC
scheme. The dispersive characteristics of these schemes can be more clearly seen in Fig. 4, which shows the

phase speed error, absðd�aDx
daDx � 1Þ, as a function of wave number on a log-arithmetic scale. We see that the

DRP scheme has a somewhat larger error than the OPC scheme until around 3p/4. The error is maintained

to be within 2% for aDx less than 0.85 for the DRP scheme, and less than 1.53 for the OPC scheme. Overall,

the OPC scheme yields slightly less dispersion error than the DRP scheme.
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Fig. 4. Phase speed error on a logarithmic scale.
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The dispersive characteristics of LDDRK are obtained by studying the value of |r| and d, i.e., dissipation
rate and dispersion error (see Eq. (44)), respectively. In Fig. 5 we can see conditions of stability: |r| < 1 for

x*Dt 6 2.52. To obtain an accurate solution the dispersive characteristics (|r| and d) should be close to the

exact solution (|r| close to one and d close to zero). Hu et al. [9] considered time accurate criterion

||r| � 1| 6 0.001 (i.e., x*Dt 6 1.64), and d 6 0.001 (i.e., x*Dt 6 1.85). These two conditions are satisfied if

x*Dt 6 1.64.
3.3. Stability of the schemes

The Fourier–Laplace transformation of the wave equation (Eq. (1)) is
�ix�~u ¼ �cia~uþ 1

2p
~uinitial; ð70Þ
where a, x* characterize the PDE. For the long wave we can approximate wavenumber of the scheme with

wavenumber of the PDE
�a ’ a; ð71Þ

which leads to
x�~u ¼ c�a~uþ k~uinitial. ð72Þ

Hence
x� ¼ �acþ kk. ð73Þ

The condition of the numerical stability is that amplification factor for time discretization is less than 1, and
hence x*Dt 6 2.52 (see Fig. 5(a)). It is also noted from Fig. 3 that
�aDx 6 1.8 for DRP scheme;

�aDx 6 2.1 for OPC scheme
ð74Þ
hold true. By introducing Eq. (74) into (73) and upon multiplying by Dt it is found that
x�Dt 6 1.8
c
Dx

½kk �M þ 1� � Dt for DRP scheme;

x�Dt 6 2.1
c
Dx

½kk �M þ 1� � Dt for OPC scheme;
ð75Þ
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where M is mach number. From Fig. 5(a) it is clear that the condition of stability is satisfied if |x*Dt| is less
than 2.52. Therefore, to ensure numerical stability it is sufficient, by Eq. (75), to restrict Dt to be less than

Dtmax, where D tmax is given by
Dtmax ¼
2.52

1.8½kk �M þ 1�
Dx
c

for DRP scheme;

Dtmax ¼
2.52

2.1½kk �M þ 1�
Dx
c

for OPC scheme.

ð76Þ
Therefore, for D t < Dtmax the schemes are numerically stable. Consequently, the schemes yield the follow-

ing criteria for numerical stability:
CFL < 1.4 for DRP scheme;

CFL < 1.2 for OPC scheme.
ð77Þ
Although it is clear that CFL 6 1.4 is the stability condition for DRP scheme, this limit does not assure

accuracy of the solution. In the previous analysis we have established that the solution is time accurate

for 4–6 LDRRK if ||r| � 1| 6 0.001 and |d| 6 0.001. But this limit is not fixed, but depends on the scheme
that is used for space discretization. For example, in the case of the DRP scheme, the solution is considered

time accurate as long as ||r| � 1j 6 0.02 and |d| 6 0.02, or x*t 6 2.0. Hence, in this case the condition of

being both accurate and stable is CFL 6 1.1.

The OPC scheme is less sensitive to the dispersive characteristics of the LDDRK scheme; hence

CFL < 1.2 is a condition of the stability and accuracy for the OPC scheme. This limit is in concordance

with the stability analysis of Ashcroft and Zhang [15].
4. Computational assessment of the DRP and OPC schemes

To investigate the behavior of the schemes, we will use four test problems. First, we consider a one-

dimensional wave equation with constant speed. The purpose of this test is to check the accuracy, stability,

dissipation and dispersion of the scheme. The second test problem is a one-dimensional nonlinear wave

equation with no viscous dissipation. The purpose of this test case is to (i) check the influence of singular-

ities on the performance of the scheme, and (ii) analyze dispersion properties when waves are coupled. In

the third test problem, we consider the one-dimensional viscous Burgers equation, which contains unsteady,
nonlinear convection and viscous terms. In this case we pay attention to the influence of the viscosity on the

solution accuracy. The last test problem is a 2D acoustic scattering problem from the second CAA Work-

shop [35]. This problem tests the curved wall boundary and the capacity of the scheme to reproduce differ-

ent wavelengths.

To evaluate the solution accuracy, we define the error vector as:
~E ¼ ½E1; . . . ;EN �T; ð78Þ

where
Ei ¼ UðxiÞ � ui; 1 6 i 6 N ; ð79Þ

U(xi) is the exact solution at the point xi, and ui is the numerical solution at the point xi. We choose to use

the discrete L1 norm:
kEk ¼¼
PN

i¼1jEij
N

ð80Þ
to measure the order of accuracy in our numerical computations.
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4.1. Test problem 1: one-dimensional linear wave equation

To assess the behavior of the DRP and OPC schemes the following simple test problem is studied

first.
ou
ot

þ c
ou
ox

¼ 0; ð81Þ

u ¼ exp � ln 2
x� x0

r

� �2� 	
at t ¼ 0 ð82Þ
which is a Gaussian profile. This is one of the test problems offered in the second CAA Workshop

[35].

The exact solution is:
U ¼ exp � ln 2
x� x0 � ct

r

� �2� 	
. ð83Þ
In this study we evaluate the performance of the schemes in short, intermediate, and long waves relative to

the grid spacing, which is assured by the value rDx.
For time discretization, we previously presented the detailed formulas for the 4-6 LDDRK, see Eqs. (46

and 47).

Tam et al. [2,3] show that �aDx is related to a Dx, and in function of aDx they divided the wave spectrum

into two categories: (i) the long waves (waves for which �aDx, in this case aDx is less than aDxc), (ii) the short
waves (waves for which �a is not close to a). This difference between long and short waves is totally depen-

dent upon the grid space. Hence, by inspecting the number of grid points on the wavelength, we can decide
that we have a certain category of wave.

In the following, we will present the results based on three categories:

� long wave (r/Dx = 20),

� intermediate wave (r/Dx = 6),

� short wave (r/Dx = 3).

The categories are defined according to the ratio r/Dx, where r is a parameter that characterizes the
wavelength of this problem. This test problem is linear; hence we do not expect differences between finite

difference and finite volume approach.

In regard to the time step selection, the CFL number (m) limit is similar for all schemes. We can see from

Fig. 6 that the critical CFL number of both schemes is close to 1.1. From the study of the error in time for

linear equations with constant convection speed it is clear that the DRP-fv and OPC-fv schemes have essen-

tially the same behavior as the corresponding finite difference approach; hence, we only present comparison

for DRP-fv and OPC-fv schemes.

The error decreases when the grid size in space decreases until a critical value is reached. For all schemes
the errors have slopes consistent with the formal order of accuracy in space. This conclusion is confirmed in

Fig. 7, where the CFL number is maintained at 0.5. For the long time scale solution, the accumulation of

error for both DRP and OPC schemes is very close (as seen in Fig. 7(b)). Here, we consider: (i) different grid

space, so both schemes have almost the same initial error and (ii) the same CFL number (0.5). This behav-

ior is expected because both schemes present the same discretization in time. The DRP scheme presents a

marginally faster accumulation of error in time.
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4.2. Test problem 2: one-dimensional nonlinear wave equation

The finite volume and finite difference schemes are equivalent for a linear equation. The difference be-

tween them appears for the nonlinear convective equation. To observe the merits and similarities of

DRP and OPC schemes, we restrict ourselves to the 1D case. In this test, a nonlinear wave equation with

a different speed is solved:
ou
ot

þ u
ou
ox

¼ 0. ð84Þ
This equation is solved in the conservative form:
ou
ot

þ 0.5
oðu2Þ
ox

¼ 0. ð85Þ
To better understand the effect of high gradients and discontinuities, we chose the following initial

conditions:
uðx; 0Þ ¼
0; x 6 0;

1; x > 0.

�
ð86Þ
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The solution for this problem can be written as:
uðx; tÞ ¼
0; x 6 0;
x
t ; 0 < x < t;

1; x P t.

8><
>: ð87Þ
In this case, for both DRP and OPC schemes, the finite difference version behaves differently from the finite

volume version. In Eqs. (46) and (47) the function F takes the form:

� DRP-fd
F i ¼ �0.5
X3
k¼�3

akðuiþkÞ2; ð88Þ
� DRP-fv
F i ¼ �0.5ððuei Þ
2 � ðuwi Þ

2Þ; ð89Þ

where ue and uw are as defined before

� OPC-fd
F i ¼ �0.25ðDB
i þ DF

i Þ; ð90Þ

where DB

i and DF
i is backward and forward derivative of u2 in place of u

� OPC-fv
F i ¼ �0.25ððuei Þ
2 � ðuwi Þ

2Þ; ð91Þ

where ue and uw are defined by (57)–(60)

The similarities and differences for all three categories (short waves [Dx/U = 1.0], intermediate waves

[Dx/U = 0.25], and long waves [Dx/U = 0.06]) are first presented. It should be noted again that the short,

intermediate and long waves are defined based on the numerical resolution. Here, U is defined as the jump

(umax � umin); in our case U = 1, hence in the following we discuss only the effect of the grid space step (Dx).
The evolution of the error as a function of grid spacing (Dx) is similar for both DRP and OPC schemes;

the difference between the finite volume and finite difference versions are far greater, as shown in Fig. 8. In
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the case of finite volume, error decreases with decreasing grid space. For finite difference, a totally different

behavior is seen. The error not only does not decrease when grid spacing decreases, but in fact increases, as

seen in Figs. 8, 9 and 11.

For short waves, all solutions show substantial errors, but the finite difference schemes perform notice-
ably worse. In the case of intermediate or long waves, the finite volume schemes exhibit satisfactory or bet-

ter performance than the finite difference schemes (see Figs. 10 and 12).
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4.3. Test problem 3: one-dimensional nonlinear Burgers equation

In this test the solution for the one-dimensional nonlinear Burgers equation is evaluated.
ou
ot

þ u
ou
ox

¼ l
o2u
ox2

. ð92Þ
The numerical solution will approach Eq. (92) in conservative form:
ou
ot

þ 0.5
ou2

ox
¼ l

o2u
ox2

. ð93Þ
The initial condition is:
uðx; 0Þ ¼ 1� tanh
x� x0
2l

� �
. ð94Þ
In this case the exact solution is:
uðx; tÞ ¼ 1� tanh
x� x0 � t

2l

� �
. ð95Þ
The scheme described earlier for inviscid Burgers� equation can also be applied to the current equation. This

is accomplished by simply adding a second-order central difference expression for the viscous term uxx. In

other words Fi is replaced by Hi
Hi ¼ F i þ lðui�1 � 2ui þ ui�1Þ=Dx. ð96Þ

Because of the viscosity that characterizes the scheme in this case, it is expected that the solution of both

approaches would be stable and similar. Hence this term will have a large influence over the value of the

error.

In our discussion, we will distinguish the following three categories of results:

� short wave (Dx/l = 10),

� intermediate wave (Dx/l = 3),

� long wave (Dx/l = 1).

In this case the numerical performance is affected by two parameters: the CFL number and the Peclet num-

ber (Pe = UDx/l).
First we compare the solution of all four schemes as function of the Peclet number (Pe) under constant

CFL number (0.2). The value of CFL number is fixed at 0.2, because the critical value for all schemes is
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much lower in the present case than for the linear case. The behavior of the error is similar among DRP-fv,

DRP-fd, OPC-fd and OPC-fv: the error increases with increasing Peclet number, until a certain value

beyond which the schemes can no longer perform satisfactorily.

For the four schemes (DRP-fv, DRP-fd, and OPC-fv, OPC-fd), the solution and error are very similar

for all categories of wave, as shown in Figs. 13–15. For long waves the solution is reproduced with high
accuracy with all four schemes, but the finite volume approach presents a slightly higher accuracy than

the finite difference schemes. The error for the intermediate wave is nearly the same with all four

approaches.

4.4. Test problem 4: two-dimensional acoustic scattering problem

To check the accuracy of the finite volume schemes in multi-dimensional situations, we consider a test

problem from the Second CAA Workshop [35]: the two-dimensional acoustic scattering problem. The
physical problem is to find the sound field generated by a propeller scattered off by the fuselage of an
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(b) Pe = 3, (c) Pe = 1.
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Fig. 15. Numerical solution obtained by OPC schemes – nonlinear Burgers equation; Dx = 0.25; CFL = 0.2; t = 20. (a) Pe = 10,

(b) Pe = 3, (c) Pe = 1.
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aircraft. The pressure loading on the fuselage is an input to the interior noise problem. The fuselage is ide-
alized by a circular cylinder and the noise source (propeller) as a line source so that the computational prob-

lem is two-dimensional. The cylinder has a radius of R = 0.5 and is located at the center of the domain.

The linearized Euler equations in polar coordinates are:
o

ot

ur
uh
p

2
64

3
75þ o

or

p

0

ur

2
64

3
75þ 1

r
o

oh

0

p

uh

2
64

3
75þ 1

r

0

0

ur

2
64

3
75 ¼

0

0

0

2
64
3
75. ð97Þ
At time t = 0, the initial conditions are:
ur ¼ uh ¼ 0; ð98Þ

pðx; y; 0Þ ¼ exp � ln 2
ðx� 4Þ2 þ y2

0.04

 !" #
. ð99Þ
The test problem asks for the unsteady pressure time history at three points A(r = 5,h = 90�),
B(r = 5,h = 135�) and C(r = 5,h = 180�), over the interval t = 5 ! 10.

The numerical computations were performed over the domain: R 2 [0.5,10.5] and h[0,2p]. For this prob-
lem three kinds of the boundary conditions are needed:

� Wall condition on the wall of the cylinder at R = 0.5.

� Periodic condition along both azimuthal boundaries at h = 0 and h = 2p.
� Outfield boundary condition, along of the far field boundary, is the acoustic radiation of Bayliss and

Turkel [36].

The wall condition is based on the wall condition of Tam and Dong [37]. This requires that:
dvr
dt

¼ � dp
dr

¼ 0. ð100Þ
This condition is satisfied by imposing the pressure derivatives on the wall to be zero, and vr = 0 on the
wall.

For this calculation, a uniformly spaced grid of 101 radial points and 153 azimuthal points was used,

with a time step of CFL = 0.5. Fig. 16 shows an instantaneous pressure at t = 7. In this figure, the acoustic

pulse is reflected by the cylinder and reaches the outer boundary. We can see that two transients are shown:

the first and larger transient travels directly from the source; the second and smaller transient is reflected



Fig. 16. Instantaneous pressure contours at time t = 7 – two-dimensional acoustic scattering problem. (a) DRP-fv, (b) OPC-fv.

Fig. 17. The pressure history at point A, B and C – two-dimensional acoustic scattering problem: finite volume approach. (a) Position

of the testing points, (b) A: R = 5, h = 900, (c) h = 135�, (d) h = 90�.

M. Popescu et al. / Journal of Computational Physics 210 (2005) 705–729 727
from the cylinder. Both schemes reproduce both transients with acceptable accuracy. Fig. 17 compares the

solution given by the fourth-order schemes: DRP-fv and OPC-fv. Between the two schemes the OPC-fv

scheme performs better.
5. Summary and conclusions

The DRP and OPC schemes, originally proposed in the finite difference form, have been assessed. To
better handle nonlinearity and geometric complexities, the finite volume version of both schemes has also

been developed. Linear and nonlinear wave equations, with and without viscous dissipation, have been

adopted as the test problems.
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For the linear wave equation with constant convection speed, the numerical stability bound posed by the

CFL number is comparable between the DRP and OPC schemes. Both OPC and DRP produce solutions of

a comparable order of accuracy, but the magnitude of the error of the OPC scheme is lower.

For the nonlinear wave equation, the finite volume schemes can produce noticeably better solutions and

can handle the discontinuity or large gradients more satisfactorily. However, as expected, all schemes have
difficulties when there is insufficient mesh resolution, as reflected in some of the short wave cases.

In conclusion, the finite volume version of both DRP and OPC schemes improves the capabilities of the

original version of the finite difference formulas in regard to nonlinearity and high gradients. They can

enhance performance of the original DRP and OPC schemes for many wave propagation problems encoun-

tered in engineering applications.
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